Critical graphs for the chromatic edge-stability number

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

On the independence number of edge chromatic critical graphs

In 1968, Vizing conjectured that for any edge chromatic critical graph G = (V,E) with maximum degree ∆ and independence number α(G), α(G) ≤ |V | 2 . It is known that α(G) < 3∆−2 5∆−2 |V |. In this paper we improve this bound when ∆ ≥ 4. Our precise result depends on the number n2 of 2-vertices in G, but in particular we prove that α(G) ≤ 3∆−3 5∆−3 |V | when ∆ ≥ 5 and n2 ≤ 2(∆− 1).

متن کامل

Edge Chromatic 5-Critical Graphs

In this paper, we study the structure of 5-critical graphs in terms of their size. In particular, we have obtained bounds for the number of major vertices in several classes of 5-critical graphs, that are stronger than the existing bounds.

متن کامل

Edge-face chromatic number and edge chromatic number of simple plane graphs

Given a simple plane graph G, an edge-face k-coloring of G is a function : E(G) [ F (G) ! f1, . . . ,kg such that, for any two adjacent or incident elements a, b 2 E(G) [ F (G), (a) 61⁄4 (b). Let e(G), ef(G), and (G) denote the edge chromatic number, the edge-face chromatic number, and the maximum degree of G, respectively. In this paper, we prove that ef(G) 1⁄4 e(G) 1⁄4 (G) for any 2-connected...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2020

ISSN: 0012-365X

DOI: 10.1016/j.disc.2020.111845